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1 The Problem at Hand

Given an object O at position Op with velocity vector of Ov and a turret T located at the
origin of the plane. T will quickly compute the required angle to fire upon, and how much delay to
apply (if any) to the projectile to be fired. This projectile has some velocity Pv that is known to the
calculations of T and will be launched at the angle computed by T after tdelay computed by T .

2 Considered with 2 dimensions

Given an object O at position (x, y) with velocity vector of (dx, dy) and a turret T located
at the origin of the xy plane. T will quickly compute the required angle to fire upon, and
how much delay to apply (if any) to the projectile to be fired. This problem can be tackled
in sequence:

1. Find the angle θ that aligns T and O at time t

2. Find the possible distance projectile P can travel within t, this is defined as Pd

3. Compare Pd and Od if Pd ≤ Od increase t and repeat previous steps

4. Pd−Od

v
= tdelay on principle of v = d

t

Steps 1,2 and 3 are implemented using a simple logic loop and running sentinal values
for t. Also, a window of opportunity may be specified, such that T will only compute n
steps to prevent a divergent loop. This could result from Ov > Pv and in which case the
logic should abort it’s process. This is a simple technical detail though, and such cases are
not considered in this paper.

2.1 Details of Steps 1-3

Step 1 can be computed by two dimensional vector arithmatic. First, since T is located
at the origin point of (0, 0), subtracting the point specifying the position O (denoted Op )
from the point specifying T has no effect. That is, Op − Tp = Op, Op is also the vector
connecting the two objects. The cosine of the angle T needs to turn to face O’s expected
position (denoted Oep ) is the dot product of the vectors of Tp and Oep provided that both
vectors are normalized. This product, Np can be used to determine the angle, by taking the
arccos(Np) and adding it to the current angle T is facing.

Step 2 and 3 are defined by a loop that exits once Pd ≥ Od or some specified maximum
look ahead value is reached. Step 2 is found by taking the magnitude of Op and Step 3
compares it to Pv · t where t is increasing as the loop runs. The cases which the comparison
may find are detailed in the figure on the next page.
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2.2 Details of Step 4 and after

In essence, step 4 is a simple calculation of Pd−Od

v
= tdelay however since this algorithm

is included inside of a larger program, it stands to reason with how to deal with our results.
Here is the function prototype:

T::P target()

where T is our Turret class and P is our objects we’ve defined as T and P respectfully.
Since our function returns and P type we need to create this object, P’s constructor

requires 4 parameters. the x and y components of it’s position vector, and it’s x and y com-
ponents of it’s velocity vector. The position is given simply by (0, 0) because the projectile
is fired from the origin. The velocity vector can be given by Pv · sin(θ) for x and Pv · cos(θ)
for y. With θ being the heading computed by Step 1.

2.3 Within the Program Itself

The program takes command line arguments of the target’s position and velocity, as well
as how many simulation steps to run. So calling the exe from a window’s command line looks
like this: consoleturret2d.exe 10 10 -1 -1 20 and this would create O with Op = (10, 10)
and Ov = (−1,−1) for a runtime simulation of 20 updates.

The runtime simulation variable makes more sense when you view the program from it’s
procedure. This is defined as:

1. Begin For Loop running for the runtime simulation amount (in this case, 20)

2. Call world.simulate() (Steps 3-6 are within world.simulate() )

3. update positions by some t amount of time.

4. if the turret is armed, call the targeting function1

5. if the turret is locked onto the target (meaning the previous step successfully targeted
O increment the simulation by the delay time and fire the projectile.

6. Display the updated positions to the console.

1 described by Steps in the §2.1
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2.4 An Example Output From the Program

Turret Program 2D

Turret Theta: 0.785398 Turret Delay: -1

Turret Vectr: 0.707107,0.707107

Turret Armed: 1 Locked: 0 Fired: 0

Turret Estimation of UFO: 0,0

UFO: Pos: 10,10 Vel: -1,-1 (1.41421 units / s)

______________________________________________________________________

Turret Theta: 0.785398 Turret Delay: -1

Turret Vectr: 0.707107,0.707107

Turret Armed: 1 Locked: 0 Fired: 0

Turret Estimation of UFO: 10,10

UFO: Pos: 10,10 Vel: -1,-1 (1.41421 units / s)

______________________________________________________________________

Turret Theta: 0.785583 Turret Delay: 0.656854

Turret Vectr: 0.707238,0.706976

Turret Armed: 0 Locked: 1 Fired: 1

Turret Estimation of UFO: 8.34315,8.34315

UFO: Pos: 8.34315,8.34315 Vel: -1,-1 (1.41421 units / s)

Fired Projectile: Pos: 0,0 Vel: 1.41448,1.41395 (2 units / s)

______________________________________________________________________

Turret Theta: 0.785583 Turret Delay: 0.656854

Turret Vectr: 0.707238,0.706976

Turret Armed: 0 Locked: 1 Fired: 1

Turret Estimation of UFO: 6.68629,6.68629

UFO: Pos: 6.68629,6.68629 Vel: -1,-1 (1.41421 units / s)

Fired Projectile: Pos: 2.34358,2.34271 Vel: 1.41448,1.41395 (2 units / s)

______________________________________________________________________

Turret Theta: 0.785583 Turret Delay: 0.656854

Turret Vectr: 0.707238,0.706976

Turret Armed: 0 Locked: 1 Fired: 1

Turret Estimation of UFO: 5.02944,5.02944

UFO: Pos: 5.02944,5.02944 Vel: -1,-1 (1.41421 units / s)

Fired Projectile: Pos: 4.68716,4.68542 Vel: 1.41448,1.41395 (2 units / s)

______________________________________________________________________

Turret Theta: 0.785583 Turret Delay: 0.656854

Turret Vectr: 0.707238,0.706976

Turret Armed: 0 Locked: 1 Fired: 1

Turret Estimation of UFO: 3.37258,3.37258

UFO: Pos: 3.37258,3.37258 Vel: -1,-1 (1.41421 units / s)

Fired Projectile: Pos: 7.03074,7.02814 Vel: 1.41448,1.41395 (2 units / s)

______________________________________________________________________
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2.5 Explanation Of Program Output

There are some values and points of interest I would like to clarify from the output on
the previous page.

• Turret Delay Value: −1 is the null value of delay time. When the delay is not calculated
yet, this negative time appears.

• Armed, Locked, and Fired: These are boolean values that control whether the targeting
function and the fired projectiles are incremented or not.

• The command line values passed to the program are as follows, 10 10 -1 -1 102

• Fired Projectile does not appear until the 3rd display because the display command
does not display this until T has targeted O

• The T delay value is not reset to 0 after P is launched, this is because the target
function is what updates that value, and the target function is not called while T is
not armed.

• all angles are in radians.

• the below figure shows a plot of the points given from the program. As you can, the
points cross inbetween the third and fourth points which you can also see in the sixth
display of the simulation output.

As you can see, the strategy described in the previous section works well. And for a
simple two dimensional problem these methods are adequate. However, for a problem of
three dimension involving gravity, these methods must be redesigned. This leads us to. . .

2Note that the output shown is only for 6 displays of the simulation
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3 Considered with 3 dimensions

The fundamental algorithm used in §2 is reusable for the problem in three dimensions,
however each of the steps involve more complex calculations. The increased complexity is
not neccesary fully grasped from the following description of the algorithm.

1. Check if O is within range.

2. Calculate the angle to face T towards an estimation of O at t in the XY plane3, this
angle is denoted PΘxy

3. Calculate the angle of elevation θz, call the line that connects T and O ox, a line
perpindicular to this is denoted as oy. These two lines create what we call the ox-oy-
plane.

4. Use θ = arctan

(
Ov

2± 2
√
Ov

4−g(gx2+2yOv
2)

gx

)
4 with respect to the ox-oy plane to create an

angle θ to fire on the ox-oy-plane. Using this θ, specifying it as Poxyθ find the time of

flight using t = 2Pvsin(θ)
g

5. compare the time of flight to the original t considered. If tflight ≤ t then we may move
out of our loop, if not, we increment t and start again.

6. Compute the delay time, this is simply t− tflight
7. Poxyθ + θz will provide us with our final angle to launch our projectile on, this angle is

called PΘz

8. Using PΘz and PΘxy we can created out launch vector for P

9. Fire the projectile after the delay time is passed

While this algorithm is twice as long in step number as the two dimensional one, A lot of
the calculations require less simulation and checking then the two dimensional problem. For
example, when computing the delay time, it is now a simple subtraction instead of solving
v = d

t
for t. The main complication that one runs into when figuring in three-dimensions

is the effects of gravity and their effect on the height of an object through a continuous
modification of the objects velocity.

3.1 Dealing With Gravity

As we can already see, our equations governing motion are no longer simpleOp = Ov·t+Op

expressions. But must be determined with respect to gravity. A solution might be to use
two 2-dimensional vectors, the first being composed of the x and y components, and the
second being composed of the magnitude of the first vector and the z component. That way
the ~xy can be updated by our simple expression, and then the second may be updated with
respect to velocity. However, this is a gross inflamation of what we can do, not to mention
overcomplicating what a few lines of code can do for us.

The actual method used in this project is to create a 3-Dimensional vector ~A and when
updating, update with our simple expression first, and then compute ~Pz as −1

2
gt2 + v · t5.

~Az can then be updated by subtracting g · t from the current velocity. These two vectors,
~P and ~A describe the position and velocity of O as well as P . A quick scan of the steps

3This is the ’two-dimensional’ plane which you can envision as the Z axis’s base
4We use x,y here instead of x = rcosθ and y = rsinθ because of the use of the ox-oy-plane instead of polar coordinates.

This is done because for the sake of this project, cartesian coordinates are used because, in general, most people visualize
problems in cartesian coordinates easier than polar.

5The full form of this equation is − 1
2gt

2 + v · t+ v0 however, because v0 is 0 we omit it.
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in §3’s algorithm description shows that the other two equations we use both make use of g
and therefore take gravity into effect without any more modification by our code.

3.2 Steps 1-5 in Detail

The first step in both algorithms is to determine if O is within range. Determining this
in 3-dimensions is more complex than the 2-dimensional version. Specifically because the
maximum range is determined by the angle of T . At first, intuition tells us that an angle
of 45◦ will give us the maximum horizontal distance; and an angle of 90◦ will give us P’s
maximum height. Obviously, we can test O to see if it qualifies in this idealistic case, but
more than likely, Op will fall between 0 and π

2
6 and this case is expensive to try for each

change in angle between O and T . We would have to compute the angle, and then the
magnitude of Op , and compare this to the maximum height attainable by P . However,
this maximum height only happens at some certain time tideal, tideal and t would have to be
either very close, or equal, in order to attain a hit. All these calculations and checks would
be, as I said, expensive.

A solution to this problem, is to use the equation from Step 4, this equation will return
imaginary roots if the object is out of range. While the square root and exponentiation
operations are generally considered expensive, compared to the alternative, I feel their use
is justified. Note that the check is the 1st Step, while the equation is part of Step 4. Within
our loop, a break can occur whenever O is determined to be out of range.

Also, we can consider what out of range means, we can be out of range in three different
ways, too far out with respect x, too far out with respect to y, and too far out with respect
to z .an object with position (254, 0, 0)7 can be hit, while an object (254, 1, 0) can’t because
x2 + y2 + z2 > 254.929 . From this we could slowly gather that the magnitude of the entire
vector could not exceed that of the maximum distance coverable by P with some fixed Pv.
This would be less expensive than many of the methods we’ve describe, especially if we store
the maximum distance in some global variable, which we could then make our checks against.
Then the only operation left to do is take the magnitude of Op and compare them.

This last method is the one we use in our actual implementation of the algorithm, because
it does not involve dependency on another step before or after it as the second strategy did.
From here, we move on to Step 2 which is a far easier problem. The calculation of PΘxy is
effectively the same as described in §2.1 description of Step 1. Because this angle is strictly
on a horizontal basis, gravity is not considered in our equations. If we considered wind speed
and direction this step would become much more difficult than it is. Causing us to face at an
angle not perfectly alligned with T estimated position. However, since this is not considered
in this project, we move on to finding PΘz .

To find PΘzwe first need to create an ox-oy-plane, and in order to do this we need to
compute the angle of elevation. We do this using the following equation

θz = arctan

 Opz√
Opx

2 +Opy
2

 8

Using θz we create our ox-oy-plane and solve the equation in Step 4 with each x being it’s

6From this point on, all angles will be given in radians, the previous use of degrees was because most people have a
more intuitive grasp of degrees. Specifically 90◦ as oppose to π

2
7In this example, Pvis 50 units per second. Giving a maximum distance coverable of 254.929 in a single direction given

45◦ as TΘz
8this is effectively the standard defination of arctan oppadj = θ the more complicated bottom is because when computing

the angle of elevation, one can think of the problem in 2 dimensions with an xy axis and a z axis, where the xy piece is
found from the hypotenuse of the x and y axis of the base plane.
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ox counterpart and y likewise. From that equation we calculate angle Poxyθ. We then use
the Poxyθ to estimate tflight (Steps 2-4) and then using tflight, we compare it to t and if
tflight ≤ t then we have found the angle which we will fire on. All that remains from here is
to shift from the ox-oy-plane back to the 3-dimensional space that T lives in. As seen in the
following illustration, Poxyθ must be added to θz in order to obtain the actual angle which
we are to launch on.

The visualization of the ox-oy-plane created by θz and O

3.3 Steps 6-9 in Detail

Step 6, due to our use of an equation to find tflight is made almost as simple as tdelay in
2-dimensions, a simple subtraction computes any delay time we might require. After this,
we only need to do one more step before being able to create our launch vector for P . This
step is simpler than the previous, as it is a quick calculation of Poxyθ + θz = PΘz . Now that
we have both PΘz and PΘxy we create the launch vector.

~Plaunch vector = (Pv · sin(PΘxy), Pv · cos(PΘxy), Pv · sin(PΘz))

And all that is left is to let the simulation know that T is locked and ready to fire as
soon as tdelay units of time have passed by.

3.4 Differences between the 2D and 3D versions of the program

[In regards to the program command arguments]

Similarily to the 2-dimensional program, this version takes command line arguments of
the target’s position and velocity, and how many simulation steps to run. The only difference
between §2.3’s explanation and this one is that the command line would be given arguments
of the form consoleturret2d.exe 100 100 50 -1 -1 10 20 instead of consoleturret2d.exe
10 10 -1 -1 20. That is, the z components of O are included into the parameters. Besides
this, the procedure is the same.
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A plot of the z components and the xy components by Wolfram Mathematica using the
programs output.

4 Complexity and Optimization

4.1 Time Complexity

The algorithm for targeting only has a single loop.

while(true){

if(lookAhead < t) { break; }

if(Td > maxD ) { break; }

if(t > flightTime ) { break; }

t++

}

calculation of heading

estimation of delay

This while loop can also be made into a for loop

for(t = 0; lookahead > t && Td < maxD && t < flightTime; t++){

simulation and calculations

}

calculation of heading

estimation of delay

At worse, the algorithm will find that the t necessary to hit O is just before the look

ahead value. The lookahead value can be computed by
v · sin(π

2
) + 2

√
(v ∗ sin(π

2
)2)

g
9 and if

9
v · sin(θ) + 2

√
(v · sin(θ)2) + 2gy0

g
y0 is the initial height, and since T lies at at the origin, the value +2gy0 will always

be 0. Also, π2 is used because the maximum time of flight can be attained when an object is launched straight into the air
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we denote the result of this calculation as Nt then the worse runtime for the algorithm can
be expressed as O(Nt) .

O(Nt) is a very broad analysis of the algorithm, however we can be far more specific and
state the runtime as

O( [5 · (O(
√
Ni ·M(Nd))) + 26 ·M(Nd) + 20 ·Θ(1)] ·Nt )

this can be computed from studying the source code and counting the number of calculations
performed.

The first term comes from the complexity of trigonometric functions, the second from the
amount of multiplication and divisions, and the third from addition,subtraction and boolean
comparison operations. M(Nd) stands for the time to perform multiplication (or division)
based on the amount of digits in the number being operated on. M(Ni) stands for the time
to perform multiplication (or division) based on the decimal precision.

4.2 Complexity of individual components of the algorithm

Component Operations Complexity

Magnitude of a Vector
√
x2 + y2 + z2 O(4· M(Nd) + 2 ·Θ(1))

Angle to hit xy arctan

(
Ov

2± 2
√
Ov

4−g(gx2+2yOv
2)

gx

)
O(
√
Ni·M(Nd) +3Θ(1) + 8·M(Nd))

Time of Flight t = 2Pvsin(θ)
g

O(2· M(Nd)+ O(
√
Ni ·M(Nd)))

θxy arctan
(
Opy

Opx

)
O(
√
Ni ·M(Nd) + M(Nd))

θz arctan

(
Opz√

Opx
2+Opy

2

)
O(
√
Ni·M(Nd)+4·M(Nd)+Θ(1))

t+ + t = t+ 1 Θ(1)
updatePosition Function Function code omitted O(7·M(Nd) + 10 ·Θ(1))
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The runtime complexity is simple to derive once you have the individual components
mapped out, and the reader is invited to double check the addition and simplification of
terms into it’s final form. Although, if the reader does this, they may notice a discrepency
between the number of constant time operations in the final complexity and individual
summation. This is due to the boolean checks against terminating the loop.

Also, the amount of trigonometric functions differs by one. This is because within the
code, the time of flight is computed twice within the loop. Once to check against terminating,
and the other to assign the variable inside the structure to keep track of it. Also, the function
code for the updatePosition function is omitted, the numerous multiplications, additions, and
boolean checks within that function are due to corrections to the position of O or P with
respect to gravity.

The runtime of the algorithm is dominated by multiplication operations, and therefore
will be affected by the precision of the calculations as well as how large the numbers are.
Generalizing the notation, we could simply remove the constant time operations because
they are, with respect to multiplication and trigonometric functions, negligable based on
their time. They are included here for details sake.

4.3 Optimizations

1. Within the angle to hit xy operation, both v2 and v4 are stored into variables at the beginning
setup of the program, this reduces the number of multiplications within that function from 13 to

10Opy is the y position of O and similarily defined for Opx
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2. Within the time of flight, storing 2 ·Pv as a variable at the beginning setup of the program reduces
multiplications within that function by one (from three to two operations that take M(Nd) .

3. also, within the overall runtime we could reduce the number of trigonometric functions by one by
storing the time of flight into a temporary variable and checking it against t and then assigning
it. This was not done within the program to reduce storage complexity.

4. An optimization that was not made was to replace the while loop with a for loop. But this was
done to improve the actual empirical runtime, because each of the conditions are tested at different
points within the loop, if a satistfactory condition is found, the loop exits before any unnecessary
code is reached. This allows for expensive operations not to be done, while using a for loop would
result in this occuring, or for the amount of boolean checks to increase.

5 Credits

• Main program source code written by Ethan Eldridge

• Vector2d class found online at Terathon Software, Vector 3d created by Ethan Eldridge through
modifications of 2d vector class.

• Formulas used in §3 Step 4 (Hitting (x, y) given initial velocity)

• Formula used in §3 Step 4 (Time of Flight)

• Height of a projectile after some t with intial velocity v

• Formula in §3.2 derived by Ethan Eldridge, explained in footnote 8 in the same secton

• §3.2 Creation of the ox-oy-plane suggested by Adam Thibault during correspondence with Ethan
Eldridge on 29 March 2011

• Computational complexity of addition, multiplication, and trigonometric functions
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